October, 1976]

A Mössbauer Study of Graphite Intercalated with Iron(III) Chloride and Aluminum Chloride

Takeshi Tominaga, Takuhiko Sakai, and Tomohiko Kimura Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113 (Received June 2, 1976)

The Mössbauer spectra of graphite-FeCl₃ and graphite-FeCl₃-AlCl₃ compounds with varying FeCl₃/AlCl₃ ratios were measured. At 298 K, the isomer shift of the Fe³⁺ peak of FeCl₃ intercalated in the graphite-FeCl₃ compounds was larger than that of pure anhydrous FeCl₃, and two sets of Fe²⁺ quadrupole doublets appeared in the spectra of the graphite-FeCl₃-AlCl₃ compounds with FeCl₃/AlCl₃ ratios of approximately one or less. These results may be accounted for in terms of the transfer of graphite π -electrons to intercalated FeCl₃.

In 1967 one of the present authors (T.T.) investigated the Mössbauer spectra of the graphite-FeCl3 intercalation compounds with a view to obtaining a clue as to the nature of the bonding in such systems.1) The isomer shift of the intercalated iron(III) chloride was found to be larger than that of pure anhydrous iron(III) chloride, indicating the possibility of the transfer of graphite π -electrons to the intercalated molecules. Similar results have been reported thereafter from several groups of workers for the Mössbauer spectra of graphite intercalated with iron chloride, or iron chloride and aluminum chloride.²⁻⁹⁾ In contrast to the previous report³⁾ that the spectra of the graphite-FeCl₃-AlCl₃ compounds were essentially the same as those of the graphite-FeCl₃ compound, we have recently observed the presence of quadrupole doublets of Fe2+ in the Mössbauer spectra of the graphite-FeCl₃-AlCl₃ compounds with FeCl₃/AlCl₃ ratios of about one or less.⁹⁾

The object of the present article is to report the detailed results of the Mössbauer spectroscopic study on the graphite-FeCl₃-AlCl₃ compounds with varying FeCl₃/AlCl₃ ratio so as to elucidate the chemical states of iron chloride intercalated in such systems.

Experimental

A pulverized natural graphite (Spectro-Materials. scopic Powder) purchased from Union Carbide Corp. was used for preparation of the intercalation compounds. The graphite-FeCl₃ compounds were obtained by procedures similar to those described in the literature. 10) Mixtures of weighed quantities of graphite and anhydrous iron(III) chloride were heated in sealed glass tubes between 230 and 350 $^{\circ}\mathrm{C}.$ The products were freed from unreacted iron chloride by washing with hot 2 M HCl and then dried at 110 °C. The products were analyzed for their metal content by decomposition to oxides. The chlorine content was determined by neutron activation analysis. The analytical results of the intercalation compounds obtained under various heating conditions are summarized in Table 1.

The graphite-FeCl₃-AlCl₃ compounds were prepared by methods essentially similar to those reported in the literature. 11,12) Mixtures of graphite with anhydrous iron(III) chloride and aluminum chloride were heated in sealed glass tubes at temperatures between 210 and 300 °C, and excess metal chlorides were removed by washing with hot 2 M HCl. The analytical results of the products prepared under various conditions are also summarized in Table 1.

Mössbauer Spectroscopy. The Mössbauer spectra of the intercalation compounds were measured at 298 and 80 K by using a Hitachi AA-40 or a Shimadzu MEG-1A Mössbauer

spectrometer with a ⁵⁷Co source diffused into copper foil. The isomer shifts are given as related to the centroid of the spectrum of iron foil at 298 K. The errors in isomer shifts and quadrupole splittings are generally of the order of 0.02— 0.03 mm/s, except for the spectra subjected to larger uncertainties because of weak absorption intensities or the complexity of overlapping peaks.

Results and Discussion

 $Graphite-FeCl_3$ Compounds. As a typical example of the graphite-FeCl₃ compounds, Mössbauer spectra of C₁₀FeCl₃ (compound II with 55.8 % FeCl₃) at 298 and 80 K are illustrated in Figs. 1a and 2a respectively. The spectrum at 298 K consists of a single absorption peak of Fe³⁺ with an isomer shift of 0.50 mm/s, which is obviously larger than that of pure anhydrous iron-(III) chloride, FeCl₃ (δ =0.42 mm/s). This observation is in agreement with the results obtained previously, 1-8) and may indicate that the graphite π -electrons are transferred to the d-orbitals of iron in all iron(III) chloride molecules rather than in one quarter of the intercalated molecules as postulated by Dzurus and Hennig. 12,13) Such an electron transfer mechanism may be further confirmed by the reverse effect observed in boron nitride-FeCl₃ compounds:14) the isomer shift of FeCl₃ intercalated in boron nitride was lower than that of pure anhydrous FeCl₃, revealing that an electron transfer from FeCl₃ to boron nitride layers probably takes place in the system. However, the isomer shift of C₁₀FeCl₃ at 80 K (0.54 mm/s) is very close to that of pure anhydrous FeCl₃ (0.52 mm/s). Hence, it is probable that the electron transfer from graphite to FeCl₃ is considerably attenuated at low temperatures.

The Mössbauer spectra of all the graphite-FeCl₃ preparations appear to be essentially similar; the isomer shift does not change significantly with the FeCl₃ content or with the heating temperature (Table 2). It is worth mentioning that only a very weak component of an Fe2+ doublet was observed in the spectrum of C₉FeCl₃ prepared by heating at 350 °C (compound III), whereas no iron(II) state was detected in the spectrum of C₁₀FeCl₃ reheated at 300 °C in vacuo (compound IV). On heating C₁₀FeCl₃ at 400 °C in vacuum or air, two sets of Fe2+ doublets arose in the spectrum, indicating the formation of FeCl₂ by decom-

 $Graphite-FeCl_3-AlCl_3$ Compounds. The Mössbauer spectra of typical graphite-FeCl3-AlCl3 compounds at 298 and 80 K are represented in Figs. 1 and 2 respective-

Table 1. Analyses of the intercalation compounds prepared in this work

Camana	Heating conditions	Analytical (%)			E-CL /AICL a)	C1//E- + A1\a'
Compound		$\widehat{\mathbf{c}}$	$\widetilde{\mathrm{FeCl_3}}$	AlCl ₃	$\mathrm{FeCl_3/AlCl_3^{a)}}$	Cl/(Fe+Al)a)
Graphite-FeCl ₃	compounds:					
I	230 °C, 4 h	56.6	43.4			3.01 ± 0.05
II	250 °C, 4 h	44.2	55.8			3.05 ± 0.07
III	350 °C, 4 h	39.6	60.4			
IV	II reheated 300 °C, 4 h	50.8	49.2			
Graphite-FeCl ₃	-AlCl ₃ compounds:					
V	270 °C, 4 h	40.9	48.5	10.6	4	
VI	210 °C, 4 h	41.9	38.0	20.1	1.5	
VII	210 °C, 4 h	42.1	34.4	23.5	1.2	
VIII	220 °C, 4 h	64.2	20.1	15.7	1.0	
IX	300 °C, 6 h	61.7	14.3	24.0	0.5	
\mathbf{X}	300 °C, 24 h	73.1	6.8	20.1	0.3	2.93 ± 0.07
XI	230 °C, 4 h	82.6	4.9	12.5	0.3	2.99 ± 0.02

a) Molar or atomic ratio.

Table 2. Mössbauer parameters of the intercalation compounds prepared in this work^{a)}

Compound	Temperature (K)		771.91						
		Inner	doublet	Outer doublet		$F\mathrm{e}^{3+}$			
		δ	$\Delta E_{ m Q}$	δ	$\Delta E_{ m Q}$	δ			
		(mm/s)							
Graphite-FeCl ₃	compounds:								
I	298	-	-			0.49			
II	յ298				_	0.50			
11) 80	-	_	_	_	0.54			
III	298					0.50			
IV	298					0.49			
Graphite-FeCl ₃ -	-AlCl ₃ compounds:								
V	298		_			0.50			
VI	298			-	_	0.46			
VII	298				-	0.47			
VIII	(298	1.11	0.86	(1.09)	(1.76)	0.45			
	(80	1.23	1.05	(1.24)	(2.10)	0.52			
IX	298ر	1.08	0.72	1.06	1.61	(0.45)			
	08 /	1.25	0.97	1.23	2.09	(0.50)			
\mathbf{x}	√298	1.05	0.78	1.12	1.49	(0.45)			
	₹ 80	1.20	1.03	1.21	2.05	(0.50)			
XI	80	1.18	0.96	1.19	1.91	(0.52)			

a) Parameters given in parentheses involve rather large uncertainties (±0.05 mm/s) due to the weak absorption intensities of overlapping peaks.

ly. The Mössbauer spectra at 298 K of the graphite–FeCl₃–AlCl₃ compounds with FeCl₃/AlCl₃ ratios of 4—1.2 (compounds V to VII) were essentially similar to those of the graphite–FeCl₃ compounds composed of an Fe³⁺ singlet alone (Figs. 1b and 1c.) As the FeCl₃/AlCl₃ ratio was decreased to one, however, a weak Fe²⁺ quadrupole doublet appeared in addition to the Fe³⁺ peak (compound VIII, Fig. 1d). In the spectra of the compounds with FeCl₃/AlCl₃ ratios of 0.5 and 0.3 (compounds IX and X), a second Fe²⁺ doublet arose outside of the initial doublet, and the intensities of both doublets exceeded that of the Fe³⁺ peak (Figs. 1e and 1f). Hence we may presume that iron chloride

molecules intercalated in the graphite–FeCl₃–AlCl₃ compounds with FeCl₃/AlCl₃ ratios of 0.3—0.5 exist predominantly in high-spin iron(II) states.

The Mössbauer spectra at 80 K of the intercalation compounds with FeCl₃/AlCl₃ ratios of 1—0.3 (compounds VIII to XI) similarly show the presence of the Fe²⁺ doublets. However, the Fe²⁺/Fe³⁺ area ratio at 80 K becomes considerably smaller than that at 298 K; thus the percentage of the Fe²⁺ fraction tends to decrease with the decrease in temperature. Although the origin of such temperature dependence of the Fe²⁺/Fe³⁺ area ratio cannot yet be explained without ambiguities, it is likely that the transfer of graphite π-electrons to

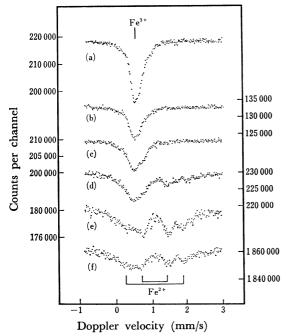


Fig. 1. Mössbauer spectra at 298 K of (a) graphite—FeCl₃ intercalation compound, and (b)—(f) graphite—FeCl₃–AlCl₃ intercalation compounds: (a) compound II, (b) compound V, (c) compound VI, (d) compound VIII, (e) compound IX, (f) compound X.

FeCl₃ may be attenuated at low temperatures, as has been observed with the graphite–FeCl₃ compounds; the other possibilities, such as an effect due to the difference in temperature dependence of the recoilless fractions of Fe²⁺ and Fe³⁺ species,¹⁵⁾ or any irreversible change in structure over the above temperature range,¹⁶⁾ may be ruled out.

As shown in Table 2, two sets of quadrupole doublets with nearly equal isomer shifts arise in the Mössbauer spectra of the graphite–FeCl₃–AlCl₃ compounds with FeCl₃/AlCl₃ ratios of 1—0.3. This is indicative of the presence of two kinds of Fe²⁺ ion sites, one of which (corresponding to the inner doublet) may not differ appreciably from the Fe²⁺ site in pure anhydrous FeCl₂ because their Mössbauer parameters are alike. Moreover, it is worthwhile mentioning that the Mössbauer parameters of the Fe²⁺ doublets of the graphite–FeCl₃–AlCl₃ compounds are generally similar to those of the Fe²⁺ peaks of the graphite–FeCl₂ compounds obtainable by reduction of the graphite–FeCl₂ compounds.^{4,6–8)} The origin of the two Fe²⁺ sites in the graphite–FeCl₂ compounds has been ascribed to dissimilar distortions from a regular octahedron of chlorine in the FeCl₂ structure.⁸⁾

The appearance of the Fe²⁺ doublets in the graphite–FeCl₃–AlCl₃ compounds with small FeCl₃/AlCl₃ ratios may be tentatively accounted for as follows.¹⁷⁾ If the AlCl₃ concentration in the metal halide layer is small, a graphite π -electron donated to an Fe³⁺ ion may be shared among several neighboring Fe³⁺ ions through a rapid exchange process, and eventually will increase the isomer shift of the Fe³⁺ single peak. As the AlCl₃ concentration exceeds the FeCl₃ con-

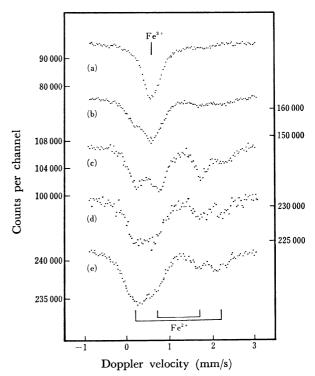


Fig. 2. Mössbauer spectra at 80 K of (a) graphite—FeCl₃ intercalation compound, and (b)—(e) graphite—FeCl₃–AlCl₃ intercalation compounds: (a) compound II, (b) compound VIII, (c) compound IX, (d) compound X, (e) compound XI.

centration (FeCl₃/AlCl₃≤1), the donated electron may be localized on one Fe³⁺ ion to produce Fe²⁺, since the iron ion is surrounded with Al³⁺ ions which are not electron acceptors, and no direct exchange of an electron between Fe³⁺ ions is probable. Accordingly, this may give evidence that a species of the type C_n +Cl⁻FeCl₂·3AlCl₃ is formed by the transfer of graphite π -electrons in the compounds with FeCl₃/AlCl₃ ratios of about 0.3, as postulated by Dzurus and Hennig.¹²)

The present authors wish to express their thanks to Professor Nobufusa Saito, of the University of Tokyo, for his encouragement and support.

References

- 1) N. Saito, T. Tominaga, M. Takeda, Y. Ohe, F. Ambe, and H. Sano, Proc. 7th Jpn. Conf. Radioisotopes, 1967, 231.
- 2) B. V. Liengme, M. W. Bartlett, J. G. Hooley, and J. R. Sams, *Phys. Lett.*, **A25**, 127 (1967).
 - 3) A. G. Freeman, Chem. Commun., 1968, 193.
- 4) J. G. Hooley, M. W. Bartlett, B. V. Liengme, and J. Sams, *Carbon*, **6**, 681 (1968).
- 5) F. D. Grigutsch, D. Hohlwein, and A. Knappwost, Z. Phys. Chem. (Frankfurt am Main), 65, 322 (1969).
- 6) V. G. Jadhao, R. M. Singru, G. M. Joshi, K. P. R. Pisharody, and C. N. R. Rao, Z. Phys. Chem. (Frankfurt am Main), 92, 139 (1974).
- 7) M. J. Tricker, E. L. Evans, P. Cadman, N. C. Davies, and B. Bach, *Carbon*, **12**, 499 (1974).
- 8) K. Ohashi and I. Tsujikawa, J. Phys. Soc. Jpn, 36, 422 (1974); ibid., 37, 63 (1974).
 - 9) T. Tominaga, T. Sakai, and T. Kimura, Chem. Lett.,

1974, 853.

- 10) W. Rüdorff and H. Schulz, Z. Anorg. Allgem. Chem., 245, 121 (1940).
- 11) R. C. Croft, J. Appl. Chem., 2, 557 (1952).
- 12) M. L. Dzurus and G. R. Hennig, J. Am. Chem. Soc., **79**, 1051 (1957).
- 13) Dzurus and Hennig¹²⁾ postulated the presence of species of the type C_n +Cl-FeCl₂·3FeCl₃ in the graphite-FeCl₃ compounds on the basis of electrical measurements.
- 14) A. G. Freeman, J. Chem. Soc., A, 1969, 1307.
- 15) The Fe²⁺/Fe³⁺ area ratios measured at 298 and 80 K for a mixture of pure anhydrous FeCl₂ and FeCl₃ were nearly equal, within about 10% uncertainty. The layer structures
- of pure anhydrous iron chlorides may be essentially retained in the intercalation compounds where they are sandwiched between graphite layers.
- 16) The spectrum at 298 K was reproducible even after the compound had been cooled to 80 K and then warmed up to room temperature again.
- 17) We may exclude the possibility of the formation of FeCl₂ by decomposition under the conditions employed in this work. In fact, the observed Cl/(Fe+Al) ratios (Table 1) were close to 3, while the ratio should be as low as 2.76 if FeCl₃ was completely decomposed to FeCl₂ in the compounds with FeCl₃/AlCl₃ ratio of about 0.3.